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that the simple property-set model (R1) and the within-class

property-set model (R2) provide a better fit to the data than all

other models, including the prototype-plus-transformation model
(R3). The last column of Table 4 provides the fit of the models
to the mean recognition ratings across subjects (the data given
in the first colunmn of Table 2). Again, the simple property-set
model and the within-class property-set model frovide the best

fit to the data.

To evaluate the statistical reliability of these results,
the fit of each model was directly compared to the fit of each
other model by a matched-pairs t-test. The matched pairs used in
the analysis were the 108 fits of the two nmodels to be compared
to the individual subiject recognition ratings. This analysis was
repeated for all pairs of 26 models in order to identify the
best-fitting model. All reported significance levels were p <

.05 or smaller.

For both subjects who knew the prototypes in advance and
those who did not, the simple property-set model and the within-
class property-set model fit the data reliably better than each
of the other 24 models. The fits of the two models were not
significantly difierent. Furthermore, by performing a Monte
Carlo analysis it was found that both these models fit the data
reliably better than chance (p < .01). The Monte Carlo analysis
compared the fit of the model to observed data with the fits when
mean recognition ratings were randomly assigned to 1items. The
attained significance level of the model (i.e., < .01) is the
proportion of times randomized ratings provided a better fit than

did the actual data.
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The results of the final classification task are given in
Table 5. The classification data were subjected to the same
vithin-subject analysis as described above for the recogaition
data. The first column of Table 5 gives the mean fit for 108
subjects of each of the 12 classification models 1listed 1in
Appendix II. The last column in Table 5 gives the fit of each of
the models to the nmean classification ratings ftor exemplars
across all subjects (the data in the last column of Table 2).
While several of the models appear to fit the data well, the best
fitting model was the classical wmost diagnostic property-set
model (C1). The similarity in the fit values of several of the
classification models 1is due to the fact that cn many paired
comparisons used in the analysis, all models make the same
predictions. However, on those comparisons for which the models
make differential predictions, the <classical most diagnostic
property-set model provides the most reliable predictions.
Matched-pairs t-tests were performed on all pairs of the 12
classification models by the same fprocedure used for the
recognition data. The <classical mest diagnostic property-set
model fit the data significantly better than each of the other 11
models, as well as fitting the data reliably better than

chance (p < .01) by a Monte Carlo analysis.

Discussion

The results suggest that initially classified exemplars
can be powerful determinants of subsequent recognition and
classification behavior. This appears to be the case even

wvhen subijects know a simple classification rule in advance and

50 need not pay particular attention to individual exemplars




TABLE 5

Proportion of Pairwise Classification Predictions
Disconfirmed for Each Classification Model

- ———_—————————————————————_——— - ——————

Mean Within-
Model Subject Fit

——— v —————————————————— - ——————————————————— . —————————

Classical Most Diagnostic
Property-Set

c1 <05
Prototype-Plus-Transformation
Cc2 07
Alternative Distance Models
C3 <07
Ccu .07
Cc5 .07
Cc6 .08
c7 <07
c8 <07
c9 .09
Alternative Strength Models
c10 .06
c1 - 12
c12 «12

—————————— -~ —————— -~ ————

Standard
Error

.004
.005

.004
004
.004
.004
.00u4
.004
.005

.004
.001
.001

Fit to Mean Test
Fxemplar Ratings

.00
.00

.03
.03
.03
.01
.03
.05
.00

.00
.10
.10
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during initial classification. PFurther, it appears that the

presentation frequency of the property-sets cf initially
classified exemplars influence subsequent recognition and
classification performance. The property-s« model described

here formalizes the§e factors. Subjects appear to encode from
presented exemplars tgingle features and conjunctions of those
features 1in thelir memory representation of the exemplars. The
assumption that all combinations of features are part of the
encoded representation distinquishes this model from other

traditional feature-frequency models.

For example, suppose the Clut 1 prototype was 30 years old,
junior high schocl education, and single; the Club 2 prototype
was 50 years old, college education, and rmarried; and 40 years
old was acceptable for either club. At the end of the initial
classification session, a subject would have seen the exemplar
{1 50 years old, junior high schocl education, single 10 times
(associated with different names and hobbies). The exemplar (2)
40 vyears old, junior high school education, single would have
been seen once. The different presentation frequencies would be
reflected in memory as differential memory strengths for the
componential property-sets. Combining these differences with the
effects of presentation ot other exewmplars the subject would have
seen sharing some of these property-sets, the merory strength
differences relevant to exemplars (1) and (2), after the initial
classification session, would be: 50 years 0ld[S0)] vs. 40 years
oldf 20), 50 years old & junior high education{31] vs. 40 years
old & junior hiqh education[ 3], 5C years old & single[21] vs. 40
years old & singlef 13], and 50 years old & junior high education

& sinqle[ 10) vs. W0 years old & junior high education &
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single{ 1]. All other corresponding property-sets for (1) and (2)

had identical memory strengths.

buring recognition, a subject's confidence in having seen an
exemplar previously 1is a function of the prior presentation
frequencies of the component property-sets of the exemplar either
in all presented examplars (simple property-set model) or in
exemplars of the same class as the test exemplar (within-class
property-set model). Since the strengths associated with (1)
dominate those of (2), both models correctly predicted better
recognition of (1) than (2). The data obtained in the experiment
are not sufficient to discriminate between these two models.
However, both of these models predict the data more reliably than

other simple feature-frequency models, the prototype-plus-

transformation model, or other strength models.

One might be tempted, based on this example, to postulate
recogynition based cnly on frequency of presentation of the entire
exemplar; that is, that (1) was recognized better than (2) simply
because it was presented ten times vs. one time. In fact, this
model was evaluated as one of the alternative strength models
(R19) and can be rejected because it produced a worse fit to the

data than the property-set models.

The property-set model alsc provided the best accounting of
final classificaticn pertormance. This representation wvas
combined with a «classification rule that assumes the most
diagnostic property-set of the test exemplar (as determined by a
classical likelihood estimate) deterwines how it is classified.

Suppose, for example, the subject attempted to classify the NEW
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exemrplar 40 years old, junior high school education, single
(312) . The most diagnostic property-set for Club 1 membership
(that is, the property-set with the largyest ratio of strengtk
contribuflons from Club 1 exemplars to total strength) is junior
high school education (=28/50). The most diagncstic property-set
for Club 2 membérship 1is married (=28/50). Since these two
likelihood estimates are identical, the subject shculd classify
the exemplar in Club 1 or Club 2 with equal probability, a
prediction confirmed by the data. This classification model was
superior to the distance and other strength models in predicting
subjects!' performance. Thus, it seems reasonawle to conclude that
the property-set model provides the best theoretical explanation
currently available for both recognition and <classification

pecformance.

On the other hand, one might conceive of situations in which
recognition and classification performance are influenced by
racriables in addition to property-set frequency. Such additional
factors determining subjects' perforrance might include conscious
strateqy shifts that result in subjects' attending to some subset
of the presented features of the stimuli, complexity and
fuzziness of the concepts to be learned, the number and ratio of
relevant and irrelevant dimensions on which exemplars vary, total
number of exemplars, amount of related prior learning,
performance criteria and feedback, and separability ot property
dimensions. Any theory that proposes to give a thorcugh account
of concept learning must address the effects of all of these (and
perhaps other) variables. While the property-set model is
amenable to elaboration 1in order to account for the effects of

all of these variables, it does not do so in the present
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formulatione.

Finally, it should be pointed out that while the property-
set model provides the best fit for the recognition and
classification data, many ot the other models tested also predict
the data well above the chance level. This result was obtained
despite the fact that feature frequency and distance from the
prototype were manipulated in a manner designed to produce
ditferential predictions of strenqgth and distance nmodels. This
1llustrates the fact that 1in this and other similar concept
ledarning experiments, the predictions of any of a number of
models are 1likely to be identical for a 1large set of the
experimental stimuli. In the present study, while many of the
models fit the mean data quite well (viz., Tables 4 and 5),
pairWwise comparisons of models on critical stiruli for which the
models made differential predictions resulted in dramatic
differences in the proportion of confirrations for the models (as

in Table 3).

It may be concluded trom these observations that studies of
ccncept learning and recognition in which only one theory is
considered, supported by conftirmatory evidence, are
methodologically suspect. Several previous studies have produced
data confirming a particular theory, but no arqument against
using the same data to support a number of equally plausible
alternative theories. In the present experiment mean recognition
and classification performance were predicted at statistically
significant levels by several models. Yet it was also possible
to reject most of those alternatives by means of the within-

subject pairwise ccmparisons of models. While it is, of course,
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impossible to compare all possitle alternative theories in
studies of concept learning or recognition, it is obviously
undesirable to propose a theory supported by data that can be
taken in support of a number of alternatives as well. Rather, an
attempt was made here to enumerate a set of well-known and
recasonable alternative recognition and classification theories,
design a testbed in which differential predictions of the
theories could be evaluated, and provide an analytic procedure to
provide as much discrimination among the alternatives as

possible.
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Appendix I

Strength and Distance Models for Recognition Performance

In specifying the models, three conventions have been
adopted. First, since all test exerplars comprised only the
three criterial teatures (age, education, and marital status),
memory representations and distance and strength metrics were
based only on those features. Names and hobbies were assigned

randomly to the originally classified exermplars, so they

should not influence any ot the rodels*' predictions.
Second, all rodels assume that each memory
representation 1is associated with an appropriate class
desijnator. Third, we distinguished type and token exemplars.

An exemplar type is any set of the three <criterial features
that occurred in at least one initially classified exemplar.
Each occurrence of ar exemplar type 1s an exemplar token. The

following are brief descriptions of alternative models.

(k1) Simple projerty-set treguencies. Every property-set of
the 1nitially classitied exemplars is stored in memory. Fach new
occurcence of a fprcperty-set 1increments 1its strength value,
Recognition contidence for a test exemplar should be an
increasing function cf the trequencies of all property-sets 1in
memory that are contained in the test exemplar. This model makes

predictions only when one test exemplar dominates another in all

corresponding property-set frequencies.

(R2) Within-class  property-set freguencies. Fvery

property-set of the initially classified exemplars is stored in
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memory. Fach property-set has a tag for each of the concept

classes represented by initially classified exemplars. Fach new
occurrence of a property-set increments its strength value for
only the concefgt class represented by 1ts occurrence.
Recognition confidence should be an increasing function of the
frequencies of the property-sets in the sarme concept class as the
test exemplar. This model makes predictions only when one test
exemplar dominates another on all corresgonding property-set

frequencies.

For models R3 - R10 the distance ltetween two exemplars 1is
defined as the number of dimensions on which they differ (the

Hamming distance).

(R3) ggggggxgg-glg§-transformation§. Only prototypes for

each of the three concepts are abstracted and stored in memory.
Recognition confidence should be a decreasing function of the
distance from the test exerplar to the nearer of the two club

prototypes.

ALTERNATIVE DISTANCE MODELS

(R4) Minimum total distance to exermplar ¢types of either

0

lass. Each initially classified Cluk 1 or 2 exemplar type
is stored in memory. Recognition confidence should be a
decreasing function of the minimum sum of the distances from
the test exemplar to the 1nitially classified exerplar types of

a single class.

(RS) Minimum total distance to exermplar tokens of either

MRS ANSLY SSEemlsf AEneEsNExs —_—,_———
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class. Each initially classified or 2 exemplar token

is stored in memory. Recognition cenfidence should bo a
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decreasing function of the minimum sum of the distances from
the test exemplar to the initially classified exemplar tokens

of a single class.

(R6) Total distapce to exemplar types of both classes. Each

initially classified Club 1 or 2 exemplar type is stored in
memory. Recogniticnp confidence should be a decreasing function
of the sum of the distances from the test exemplar to the

initially classified exemplar types of both classes.

(R7) Total distance to exemplar tokens of both classes.

each 1initially classified Club 1 or 2 exemplar token 1s stored
1n  memory. Recognition confidence should be a decreasing
function of the sum of the distances fror the test exemplar

to the 1initially classitfied exerplar tokens of both classes.

(R8) Total distance t all presentation types. Every

———== -_— —_—mn =

initially classified exemplar type 1s stored 1in memory.
Recognition confidence should be a decreasing function of the sum
of the distances trom the test exemplar to the initially

classified exemplar types.

(R9) Total distance to all presentation tokens. Every
initially classified exemplar token 1is stored in memory.
Recognition confidence should be a decreasing function of

the sum of the distances from the test exemplar to the

initially classitied exemplar tokens.

(R10) Nearest neighbor. Each initially classified Club 1 or

2 exerplar type (or token) is stored in memory. Recognition

confidence should be a decreasing function of the minimum
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distance from the test exemplar to any stored exemplar.

(R11-R18) Models R11-R18 are the same as models
83-R10 except that the distance between two items is defined

as a three-tuple (d , 4 ,d )« d equals zero (one) if the
1 2 3 i

tvo 1items are identical (different) on dirension i (i = 1,
2, 3). These models predict that an exemplar X should be
recognized better than an exemplar Y if the distances asso-

ciated with x and v, (x, x , x ) and (Y , ¥ , ¥ ), satisfy
1 2 3 1 3

the conditions: y > x or y =x {i=1,2, 3) and y > x
i i i i i i

for at least one i. If y = «x (1 =1, 2, 3), the models
1 i

predict equal recognition of X and Y.

e o | e e o i . e e e

(R19) Frequency of presentation. Each initially classified
exemplar token 1s stored 1in memory. Recognition confidence
should be an increasing function of the presentation frequency

of the test exemplar type.

(R20) Within-clas

0]

freguency of presentation. Each
initially classified exemplar token is stored in memory .
Recognition confidence should be an increasing function of the
maximur frequency of the test exemplar type in the agpropriate

class.

(R21) Feature frequencies. Each criterial feature in the
initially classified exemplars is stored in memory.
Recognition confidence should be an increasing function of the

frequencies of the features in the test exemplar among all

BT
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presented exemplars. This model rmakes predictions only when
one test exemplar dominates another on all corresponding

feature frequencies.

(k22) Within-class feature fregquencies. Each criterial

teature in the initially classified exemplars is stored
in mepory. Kecognition confidence should be an increasing
function of the trequencies of the features in the test
exemplar among presented exemplars of the same class as the
test exemplar. This model makes predictions only when one
test exemplar dominates another on all corresponding feature

frequencies.

(R23) Sum of feature frequencies. Each criterial feature in

the initielly classified exemplars is stored in memory.
Recognition confidence should bte ar increasing fudnction of
the sum of the frequencies of the teatures in the test exemplar

amonqg all presented exemplars.

(R24) wWithin-class sum of feature frequencies. Each
criterial feature in the 1initially classified exemplars is
stored in memory. Recognition confidence shculd be an
increasing tunction of the sum of the frequencies of the features

in the test exemplar among presented exemplars of the same class

as the test exemplar.

(R25) Most freguent property-set. Every property-set
encoded for the 1initially classified exemplars 1is stored in
memory. Recogniticn confidence should be an increasing function

of the frequency of the most frequent property-set encoded for

the test exemplar anong all presented exemplars.

s )




oY

(R26) Within-class most frequent property-set. Every

property-set encoded for the initially classified exemplars
is stored in memory. Recognition confidence should be an
increasing tuncticn of the frequency of the most frequent

property-set encoded for the test exemplar amony presented

exemplars of the same class as the test exemplar.
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Appendix II

Strength and Distance Models for Classification Performance

Twelve classification models were evaluated. For models
c2-C8, the distance between two exemplars was defined as the
number of dimensions on which they differed. It was impossible
to apply three-tuple distances (as in recognition models R9-R16),
because they do not provide a basis for determining relative

distances to the exemplars or prototypes of alternative classes.

{C1) Classical rmost diagnostic property-set. RAll property-
sets encoded for the initially classified exemplars are stored
in memory. A test exemplar should be classified 1in the class

associated with 1ts most diagnoestic property-set (classical

estimator = (frequency of the propecty-set in class
1)/ (frequency of the propecty-set in both classes)).
Confidence should be an increasing turction of the

classical 1likelihood estimator of the most diagnostic property-

set.

ALTERNATIVE DISTANCE HODELS

(C2) Prototype-plus-transforratiors. Only the class
prototypes are stored 1n memory. A test exermplar should
be classified 1in the class associated with the nearer
prototype. Confidence should decrease as a tunction of the

distance from the exemplar to the prototype.

(C3) Difference between distances to both prototypes. only

—_——mas~-
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the two «class prototypes are stored in memory. A test exemplar
should be classified in the class associated with the
nearer prototype. Confidence should be an increasing function

of the absolute value of the difference between the distances

from the exemplar to each prototype.

(C4) Minimum sum of distances to exemplar types. Each

initially classified exemplar type is stored in memory. A test

exemplar should be classified in the class associated vith
the rinimum sur of distances fror the exemplar to the
class's exemplar types. Confidence should be a decreasing

function of the sum of distances.

(CS) Difference between sums of distances to exemplar types

ot two classes. Each initially classified exemplar type is
stored in memory. A test exemplar should be <classified 1in the
class associated with the rminimur sur of distances from the
exemplar to the class's exemplar types. Confidence should be
an 1increasing function of the atksolute value of the difference
between the sums of distances from the test exemplar to the

exemplar types of the two classes.

m sup of distances to exerplar tokens. Each

initially classified exemplar token is stored in memory. A
test exemplar should be classified in the class associated with
the minimum sum of distances from the exemplar to the
class's exemplar tokens. Confidence should be a decreasing

function of the sum of distances.

(C7) Difference between sums of distances to exemplar tokens

of two classes. Each initially classified exemplar token is
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stored in memory. A test exemplar should te classitied 1in the
class associated with the winimumr sum of distances from the
exemplar to the class's exemplar tokens. Confidence should be
an 1ncreasing function of the absolute value of the ditference
between the sums of distances from the test exemplar to the

exemplar tokens of the two classes.

(C8) Nearest neighbor. Each initially classificd exemplar
type is stored in memory. A test exerplar should be
classified in the class associated with 1its nearest neighbor
(minimum distance) in memory. Contfidence should be a
decreasing function ot the distance from the exemplar to 1its

nearest neiqghbor.

ALTERNATIVE STRENGTH MODELS

(C9) Sum of between-class property-set frequencies. All

property-sets encoded for the 1initially classified exemplars
are stored in memory. A test exemplar should be classified in
class 1 1if all of 1its property-sets have occurred more
frequently among the exemplars of class 1 than class o
Confidence should be an increasing tuncticn of the sum of the
differences between frequencies of associjiation between

corresponding property-sets and the two classes.

(C10) Bayesian most diagnostic property-set. All property-
sets encoded tor the initially classitied exemplars are stored
in memory. A test exemplar should be classified in the <class
associated with its most diagnostic property-set (Bayesian
estimator = (frequency of ¢the property-set in class i +

1)/ (frequency of the property-set in both classes ¢+ 2)).

i v =1 ii
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Confidence should be an increasing function of the EFayesian

likelihood estimator or the most diagnostic property-set.

(C11) Fregquency of presentation in either class. Initially
classified exemplar tokens are stecred 1in rmemory. A test
exemplar should be <classified in the class most frequently
associated with its type 1in mermory. Confidence should be an

increasing function of the frequency of presentation of the

exemplar type in the class.

(C12) Difference between presentation freguencies in the two

classes. Initially classified exerplar tokens are stored in
memory. A test exewplar should be classitied in the club
most frequently associated with its type in memory .
Confidence should ke an increasing function of the absolute
value of the difference between its presentation frequencies in

the two clubs.
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